Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 60(2): 362-374, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345467

RESUMO

Mass mortality events in wildlife can be indications of an emerging infectious disease. During the spring and summer of 2021, hundreds of dead passerines were reported across the eastern US. Birds exhibited a range of clinical signs including swollen conjunctiva, ocular discharge, ataxia, and nystagmus. As part of the diagnostic investigation, high-throughput metagenomic next-generation sequencing was performed across three molecular laboratories on samples from affected birds. Many potentially pathogenic microbes were detected, with bacteria forming the largest proportion; however, no singular agent was consistently identified, with many of the detected microbes also found in unaffected (control) birds and thus considered to be subclinical infections. Congruent results across laboratories have helped drive further investigation into alternative causes, including environmental contaminants and nutritional deficiencies. This work highlights the utility of metagenomic approaches in investigations of emerging diseases and provides a framework for future wildlife mortality events.


Assuntos
Doenças Transmissíveis Emergentes , Aves Canoras , Animais , Animais Selvagens , Metagenoma , Bactérias/genética , Doenças Transmissíveis Emergentes/veterinária , Metagenômica/métodos
2.
Antibiotics (Basel) ; 12(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136696

RESUMO

Salmonella isolated from dairy farms has a significant effect on animal health and productivity. Different serogroups of Salmonella affect both human and bovine cattle causing illness in both reservoirs. Dairy cows and calves can be silent Salmonella shedders, increasing the possibility of dispensing Salmonella within the farm. The aim of this study was to determine the genomic characteristics of Salmonella isolates from dairy farms and to detect the presence of virulence and antimicrobial resistance genes. A total of 377 samples were collected in a cross-sectional study from calves, periparturient cow feces, and maternity beds in 55 dairy farms from the states of Aguascalientes, Baja California, Chihuahua, Coahuila, Durango, Mexico, Guanajuato, Hidalgo, Jalisco, Queretaro, San Luis Potosi, Tlaxcala, and Zacatecas. Twenty Salmonella isolates were selected as representative strains for whole genome sequencing. The serological classification of the strains was able to assign groups to only 12 isolates, but with only 5 of those being consistent with the genomic serotyping. The most prevalent serovar was Salmonella Montevideo followed by Salmonella Meleagridis. All isolates presented the chromosomal aac(6')-Iaa gene that confers resistance to aminoglycosides. The antibiotic resistance genes qnrB19, qnrA1, sul2, aph(6)-Id, aph(3)-ld, dfrA1, tetA, tetC, flor2, sul1_15, mph(A), aadA2, blaCARB, and qacE were identified. Ten pathogenicity islands were identified, and the most prevalent plasmid was Col(pHAD28). The main source of Salmonella enterica is the maternity areas, where periparturient shedders are contaminants and perpetuate the pathogen within the dairy in manure, sand, and concrete surfaces. This study demonstrated the necessity of implementing One Health control actions to diminish the prevalence of antimicrobial resistant and virulent pathogens including Salmonella.

3.
Access Microbiol ; 5(10)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970082

RESUMO

Background: As the COVID-19 pandemic continues, efforts to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral shedding and transmission in both unvaccinated and vaccinated populations remain critical to informing public health policies and vaccine development. The utility of using real time RT-PCR cycle threshold values (CT values) as a proxy for infectious viral litres from individuals infected with SARS-CoV-2 is yet to be fully understood. This retrospective observational cohort study compares quantitative infectious viral litres derived from a focus-forming viral titre assay with SARS-CoV-2 RT-PCR CT values in both unvaccinated and vaccinated individuals infected with the Delta strain. Methods: Nasopharyngeal swabs positive for SARS-CoV-2 by RT-PCR with a CT value <27 collected from 26 June to 17 October 2021 at the University of Vermont Medical Center Clinical Laboratory for which vaccination records were available were included. Partially vaccinated and individuals <18 years of age were excluded. Infectious viral litres were determined using a micro-focus forming assay under BSL-3 containment. Results: In total, 119 specimens from 22 unvaccinated and 97 vaccinated individuals met all inclusion criteria and had sufficient residual volume to undergo viral titring. A negative correlation between RT-PCR CT values and viral litres was observed in both unvaccinated and vaccinated groups. No difference in mean CT value or viral titre was detected between vaccinated and unvaccinated groups. Viral litres did not change as a function of time since vaccination. Conclusions: Our results add to the growing body of knowledge regarding the correlation of SARS-CoV-2 RNA levels and levels of infectious virus. At similar CT values, vaccination does not appear to impact an individual's potential infectivity when infected with the Delta variant.

4.
Mol Ecol Resour ; 23(5): 975-989, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36727264

RESUMO

DNA barcoding approaches have greatly increased our understanding of biodiversity on the planet, and metabarcoding is widely used for classifying members of the phylum Nematoda. However, loci typically utilized in metabarcoding studies are often unable to resolve closely related species or are unable to recover all taxa present in a sample due to inadequate PCR primer binding. Mitochondrial metagenomics (mtMG) is an alternative approach utilizing shotgun sequencing of total DNA to recover the mitochondrial genomes of all species present in samples. However, this approach requires a comprehensive reference database for identification and currently available mitochondrial sequences for nematodes are highly dominated by sequences from the order Rhabditida, and excludes many clades entirely. Here, we analysed the efficacy of mtMG for the recovery of nematode taxa and the generation of mitochondrial genomes. We first developed a curated reference database of nematode mitochondrial sequences and expanded it with 40 newly sequenced taxa. We then tested the mito-metagenomics approach using a series of nematode mock communities consisting of morphologically identified nematode species representing various feeding traits, life stages, and phylogenetic relationships. We were able to identify all but two species through the de novo assembly of COX1 genes. We were also able to recover additional mitochondrial protein coding genes (PCGs) for 23 of the 24 detected species including a full array of 12 PCGs from five of the species. We conclude that mtMG offers a potential for the effective recovery of nematode biodiversity but remains limited by the breadth of the reference database.


Assuntos
Genoma Mitocondrial , Nematoides , Animais , Filogenia , Metagenômica , Nematoides/genética , Biodiversidade , DNA , Código de Barras de DNA Taxonômico , Genoma Mitocondrial/genética
5.
Zootaxa ; 5325(3): 429-435, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38220900

RESUMO

Specimens of a bark beetle, Crypturgus hispidulus Thomson, 1870, were discovered in New England, U.S.A. This is the first record of this species established in North America. Misidentified specimen records were found from multiple states in different years, confirming establishment of the species in the Northeastern United States. The morphology is presented and a modified key to Crypturgus in North America is provided to facilitate species identification.


Assuntos
Besouros , Gorgulhos , Animais , Casca de Planta , América do Norte , New England
6.
J Genomics ; 10: 69-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176899

RESUMO

Metagenomic analysis of stone microbiome from samples collected in New England, USA and Tamil Nadu, India identified numerous Actinobacteria including Geodermatphilaceae. A culture-dependent approach was performed as a companion study with this culture-independent metagenomic analysis of these stone samples and resulted in the isolation of eleven Geodermatphilaceae strains (2 Geodermatophilus and 9 Blastococcus strains). The genomes of the 11 Geodermatphilaceae strains were sequenced and analyzed. The genomes for the two Geodermatophilus isolates, DF1-2 and TF2-6, were 4.45 and 4.75 Mb, respectively, while the Blastococcus genomes ranged in size from 3.98 to 5.48 Mb. Phylogenetic analysis, digital DNA:DNA hybridization (dDDH), and comparisons of the average nucleotide identities (ANI) suggest the isolates represent novel Geodermatophilus and Blastococcus species. Functional analysis of the Geodermatphilaceae genomes provides insight on the stone microbiome niche.

8.
Methods Mol Biol ; 2219: 289-305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33074549

RESUMO

Miniaturization, which is a common feature in animals, is particularly manifest in meiofauna-animals sharing peculiar phenotypic features that evolved as adaptations to the highly specialized aquatic interstitial habitat. While revealing much about the extreme phyletic diversity of meiofauna, the genome structure of meiofaunal species could also characterize the phenotype of ancestral states as well as explain the origin and evolution of miniaturization. Here, we present a practical bioinformatics tutorial for genome assembly, genome comparison, and characterization of Hox clusters in meiofaunal species.


Assuntos
Genômica/métodos , Animais , Biodiversidade , Evolução Biológica , Biologia Computacional/métodos , Ecossistema , Genes Homeobox , Genoma , Componentes Genômicos , Filogenia , Software
9.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299877

RESUMO

Here, we report 11 bacterial strains isolated from commercial corn-based poultry feed to determine their potential as hygienic indicator microorganisms through a comparison of genome sizes and distribution patterns of unique genes. These isolates belonged to the genera Klebsiella, Kosakonia, Pantoea, Stenotrophomonas, and Enterococcus.

10.
Environ Microbiol ; 22(4): 1467-1480, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31158316

RESUMO

Stone surfaces are extreme environments that support microbial life. This microbial growth occurs despite unfavourable conditions associated with stone including limited sources of nutrients and water, high pH and exposure to extreme variations in temperature, humidity and irradiation. These stone-dwelling microbes are often resistant to extreme environments including exposure to desiccation, heavy metals, UV and Gamma irradiation. Here, we report on the effects of climate and stone geochemistry on microbiomes of Roman stone ruins in North Africa. Stone microbiomes were dominated by Actinobacteria, Cyanobacteria and Proteobacteria but were heavily impacted by climate variables that influenced water availability. Stone geochemistry also influenced community diversity, particularly through biologically available P, Mn and Zn. Functions associated with photosynthesis and UV protection were enriched in the metagenomes, indicating the significance of these functions for community survival on stones. Core members of the stone microbial communities were also identified and included Geodermatophilaceae, Rubrobacter, Sphingomonas and others. Our research has helped to expand the understanding of stone microbial community structure and functional capacity within the context of varying climates, geochemical properties and stone conditions.


Assuntos
Ambientes Extremos , Microbiota , África do Norte , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma , Microbiota/genética , Fotossíntese , Raios Ultravioleta
11.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624170

RESUMO

Here, we report 10 bacterial strains isolated from an abandoned coal mine in southeast Kansas to determine their potential for bioremediation through comparison of the genome sizes and distribution patterns of unique metabolic genes. The selected strains belong to the genera Arthrobacter, Jeotgalibacillus, Kocuria, Microbacterium, Pantoea, Rhodococcus, Vibrio, Brevibacterium, and Paenibacillus.

12.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346016

RESUMO

Pseudomonas stutzeri CM14, Pseudomonas fluorescens BL, and Pantoea agglomerans BL3 were isolated from Humulus lupulus cones. Here, we present the draft genome sequences of three bacteria that have been associated with hop plants.

13.
BMC Genomics ; 20(1): 268, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947688

RESUMO

BACKGROUND: Although high-throughput marker gene studies provide valuable insight into the diversity and relative abundance of taxa in microbial communities, they do not provide direct measures of their functional capacity. Recently, scientists have shown a general desire to predict functional profiles of microbial communities based on phylogenetic identification inferred from marker genes, and recent tools have been developed to link the two. However, to date, no large-scale examination has quantified the correlation between the marker gene based taxonomic identity and protein coding gene conservation. Here we utilize 4872 representative prokaryotic genomes from NCBI to investigate the relationship between marker gene identity and shared protein coding gene content. RESULTS: Even at 99-100% marker gene identity, genomes share on average less than 75% of their protein coding gene content. This occurs regardless of the marker gene(s) used: V4 region of the 16S rRNA, complete 16S rRNA, or single copy orthologs through a multi-locus sequence analysis. An important aspect related to this observation is the intra-organism variation of 16S copies from a single genome. Although the majority of 16S copies were found to have high sequence similarity (> 99%), several genomes contained copies that were highly diverged (< 97% identity). CONCLUSIONS: This is the largest comparison between marker gene similarity and shared protein coding gene content to date. The study highlights the limitations of inferring a microbial community's functions based on marker gene phylogeny. The data presented expands upon the results of previous studies that examined one or few bacterial species and supports the hypothesis that 16S rRNA and other marker genes cannot be directly used to fully predict the functional potential of a bacterial community.


Assuntos
Bactérias/classificação , Bactérias/genética , Genes Bacterianos/fisiologia , Marcadores Genéticos , Genoma Bacteriano , Metagenoma , DNA Bacteriano/genética , Evolução Molecular , Genes Bacterianos/genética , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
14.
Artigo em Inglês | MEDLINE | ID: mdl-30533937

RESUMO

Pseudomonas fluorescens strain EC1 was isolated from Cucumis sativus (cucumber) roots, and P. fluorescens SC1 was isolated from Solanum lycopersicum (tomato) roots. The P. fluorescens SC1 genome has a total sequence length of 6,157,842 bp, and the P. fluorescens EC1 genome has a total sequence length of 6,125,428 bp.

16.
Commun Biol ; 1: 112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271992

RESUMO

Accurate assessments of biodiversity are crucial to advising ecosystem-monitoring programs and understanding ecosystem function. Nevertheless, a standard operating procedure to assess biodiversity accurately and consistently has not been established. This is especially true for meiofauna, a diverse community (>20 phyla) of small benthic invertebrates that have fundamental ecological roles. Recent studies show that metabarcoding is a cost-effective and time-effective method to estimate meiofauna biodiversity, in contrast to morphological-based taxonomy. Here, we compare biodiversity assessments of a diverse meiofaunal community derived by applying multiple taxonomic methods based on comparative morphology, molecular phylogenetic analysis, DNA barcoding of individual specimens, and metabarcoding of environmental DNA. We show that biodiversity estimates are strongly biased across taxonomic methods and phyla. Such biases affect understanding of community structures and ecological interpretations. This study supports the urgency of improving aspects of environmental high-throughput sequencing and the value of taxonomists in correctly understanding biodiversity estimates.

17.
PLoS One ; 10(5): e0127519, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996944

RESUMO

The phylogenetic relationships among certain groups of gastropods have remained unresolved in recent studies, especially in the diverse subclass Opisthobranchia, where nudibranchs have been poorly represented. Here we present the complete mitochondrial genomes of Melibe leonina and Tritonia diomedea (more recently named T. tetraquetra), two nudibranchs from the unrepresented Cladobranchia group, and report on the resulting phylogenetic analyses. Both genomes coded for the typical thirteen protein-coding genes, twenty-two transfer RNAs, and two ribosomal RNAs seen in other species. The twelve-nucleotide deletion previously reported for the cytochrome oxidase 1 gene in several other Melibe species was further clarified as three separate deletion events. These deletions were not present in any opisthobranchs examined in our study, including the newly sequenced M. leonina or T. diomedea, suggesting that these previously reported deletions may represent more recently divergent taxa. Analysis of the secondary structures for all twenty-two tRNAs of both M. leonina and T. diomedea indicated truncated d arms for the two serine tRNAs, as seen in some other heterobranchs. In addition, the serine 1 tRNA in T. diomedea contained an anticodon not yet reported in any other gastropod. For phylogenetic analysis, we used the thirteen protein-coding genes from the mitochondrial genomes of M. leonina, T. diomedea, and seventy-one other gastropods. Phylogenetic analyses were performed for both the class Gastropoda and the subclass Opisthobranchia. Both Bayesian and maximum likelihood analyses resulted in similar tree topologies. In the Opisthobranchia, the five orders represented in our study were monophyletic (Anaspidea, Cephalaspidea, Notaspidea, Nudibranchia, Sacoglossa). In Gastropoda, two of the three traditional subclasses, Opisthobranchia and Pulmonata, were not monophyletic. In contrast, four of the more recently named gastropod clades (Vetigastropoda, Neritimorpha, Caenogastropoda, and Heterobranchia) were all monophyletic, and thus appear to be better classifications for this diverse group.


Assuntos
Gastrópodes/classificação , Gastrópodes/genética , Genoma Mitocondrial , Filogenia , Animais , Sequência de Bases , Ordem dos Genes , Genes Mitocondriais , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...